
Energy Reports 8 (2022) 2656–2671

h
2

Contents lists available at ScienceDirect

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

Review article

Physical energy and data-drivenmodels in building energy prediction:
A review
Yongbao Chen a,∗, Mingyue Guo b, Zhisen Chen b, Zhe Chen a,∗, Ying Ji c
a School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
b School of Mechanical and Energy Engineering, Tongji University, Shanghai, 201804, China
c Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China

a r t i c l e i n f o

Article history:
Received 3 June 2021
Received in revised form 15 January 2022
Accepted 19 January 2022
Available online xxxx

Keywords:
Building energy modeling
Load prediction
Machine learning
Building energy simulation
Time series forecasting

a b s t r a c t

The difficulty in balancing energy supply and demand is increasing due to the growth of diversified
and flexible building energy resources, particularly the rapid development of intermittent renewable
energy being added into the power grid. The accuracy of building energy consumption prediction is
of top priority for the electricity market management to ensure grid safety and reduce financial risks.
The accuracy and speed of load prediction are fundamental prerequisites for different objectives such
as long-term planning and short-term optimization of energy systems in buildings and the power grid.
The past few decades have seen the impressive development of time series load forecasting models
focusing on different domains and objectives. This paper presents an in-depth review and discussion of
building energy prediction models. Three widely used prediction approaches, namely, building physical
energy models (i.e., white box), data-driven models (i.e., black box), and hybrid models (i.e., grey box),
were classified and introduced. The principles, advantages, limitations, and practical applications of
each model were investigated. Based on this review, the research priorities and future directions in the
domain of building energy prediction are highlighted. The conclusions drawn in this review could guide
the future development of building energy prediction, and therefore facilitate the energy management
and efficiency of buildings.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

AC Air conditioning
ANN Artificial neural networks
BIM Building information model
CV Coefficient of variation
CV-RMSE Coefficient of variation of root mean

square error
DNN Deep neural networks
DR Demand response
ELM Extreme learning machine
LTLF Long-term load forecasting
EMS Energy management system
ENMIM Evolutionary neural machine inference

model
GMM Gaussian mixture model
GPR Gaussian process regression
GRU Gated recurrent unit
HVAC Heating, ventilation, and

air-conditioning
kNN k-nearest neighbors
LMSR Linear model using stepwise regression
LR Linear regression
LS-SVM Least-square support vector machine
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MARS Multivariate adaptive regression splines
MLP Multilayer layer perceptron
NARM Nonlinear autoregressive model
RC Resistance capacitance
RF Random forest
RNN Recurrent neural networks
STLF Short-term load forecasting
SVM Support vector machine
SVR Support vector regression
XGBoost Extreme gradient boosting

1. Introduction

1.1. Literature reviews

The building sector is a major energy consumer in the world,
ccounting for 39% of the world’s total energy consumption ac-
ording to statistics study (Somu et al., 2020). To reduce building
nergy consumption, improve energy efficiency, and increase the
roportion of renewable energy utilization, building energy pre-
iction plays a critical role not only in building energy systems
lanning and optimization (Zhou and Zheng, 2020; Fan et al.,
017) but also in building renewable energy penetration (Salkuti,
019; Ahmad et al., 2020). As we know, buildings can be energy
onsumers and producers simultaneously. In this situation, the
2657
main challenge is to match the intermittent renewable energies
with energy supply and demand management in place and time.
Accurate and fast energy consumption prediction can help to
achieve the goals of evaluating new building design alternatives
and optimizing energy systems. For instance, in the design phase,
the forecasting of building load is the basis of energy system
selection, for example, the selection of the size and type of air
conditioning (AC). In addition, with the rapid development of
renewable energy, the application of energy management strate-
gies such as demand response (DR) has been deemed to be a
promising way to balance the power supply and demand in the
grid (Chen et al., 2018, 2019). In the domain of building DR,
a fair and accurate load baseline that commonly predicts the
hour-ahead load of DR is the key factor for the stakeholders to
determine whether to implement the DR program.

With the different needs in practical building programs, there
are two types of common prediction models. One is short-term
load forecasting (STLF) and the other is long-term load forecast-
ing (LTLF). STLF aims to estimate the load of the next seconds
up to the next two weeks, while LTLF focuses on months and
longer periods (Hong and Fan, 2016). Fig. 1 shows the applica-
tions of STLF and LTLF. Commonly, DR and system operational
optimization require fast computational iterations in the control
algorithms; hence, STLF is suitable. For system planning and
energy policy-making, energy supply and demand conditions in
the future should also be considered, and thus, LTLF is usually
implemented.

Regardless of the STLF or LTLF method, many efforts have
been made in recent decades by numerous scientists and en-
gineers to develop energy consumption prediction approaches.
These efforts can be categorized into three types. First, the build-
ing physical energy model, also called ‘‘white box’’, is based on
detailed building parameters and heat balance equations. Com-
monly used building physical energy simulation tools such as
EnergyPlus (U.S. Department of Energy, 2021), Dymola (Anon,
2021b,c), and TRNSYS (Anon, 2021d) are introduced in this paper.
Second, the data-driven model called ‘‘black box’’ is based on
historical operational big data and machine learning algorithms
which refer to support vector regression (SVR) (Chen et al., 2017),
random forest (RF) (Dudek, 2015), extreme gradient boosting
(XGBoost) (Butch, 2020), artificial neural networks (ANN) (Abu-
Et-Magd and Findla, 2003), among other techniques. Lastly, the
hybrid model called ‘‘grey box’’ is a model that combines building
physical information with historical data sources (Somu et al.,
2020; Dong et al., 2016).

In the domain of the physical model, the zonal and nodal
approaches have been reviewed by Foucquier et al. (2013) and
we recommend the readers to refer to their paper. Hence, in this
study, we mainly focused on the advantages and disadvantages
of other aspects of the simulation tools. Usually, the prediction
accuracy of the physical models is higher compared with the
statistical models (Mazzeo et al., 2020). However, developing
detailed physical energy models for each building is a tiresome
task. Therefore, a data-driven model is an alternative owing to the
rapid development of big data technologies such as sub-metering
and smart buildings, and it has gained increasing popularity in
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Fig. 1. Classification and applications of STLF and LTLF.
ecent years. Deep learning is an example of particularly suc-
essful (Sun et al., 2020; Gassar et al., 2019). In the data-driven
odel domain, two main factors, i.e., feature importance and
lgorithm selection, were considered in the previous literature.
he input feature variables, including external and internal fac-
ors, are the key elements for the prediction performance of the
lgorithms (Zhang and Wen, 2019a; Luo et al., 2020). Although
he data-driven model has the merit of requiring less building
nformation to develop the model, the prediction performance is
nstable, especially when the model is applied to other building
ases. In addition, hybrid models have been developed simultane-
usly to improve the prediction performance by integrating the
dvantages of physical and data-driven models.
There are several review papers about building energy pre-

iction (Foucquier et al., 2013; Wang and Srinivasan, 2017a;
masyali and El-Gohary, 2018). However, there are still two
esearch gaps. First, most of the review papers focused on data-
riven models using machine learning algorithms (i.e., ‘‘black
ox’’ model). Despite the importance of these review efforts,
hysical and hybrid models are also important and well-
eveloped that they should be included and further discussed.
econd, review studies that cover overall building energy con-
umption prediction research in terms of different prediction
pans (i.e., STLF and LTLF) are still insufficient. Such a review is
ssential for building owners to select an appropriate prediction
odel. Distinguishing from the published review papers, the
ovelty of this paper is to elaborate on building energy prediction
odels based on prediction span. In the field of building energy
rediction, the prediction span is diverse according to practical
ngineering needs. Different models have different performances
n manifold tasks of various prediction spans. In this review study,
hree types of methods in different prediction spans (i.e., STLF and
TLF) were investigated. The principle, advantages, limitations,
nd practical applications of each method were investigated. In
ummary, this paper paves the way for a better understanding of
he methodology for building energy prediction.

.2. Objectives and structure of the review

The goal of this paper is to provide a comprehensive review
f building energy prediction approaches. The goals of this pa-
er are fourfold: (1) presenting a systematic review (including
hysics-based, data-driven, and hybrid approaches) to facilitate
he development of energy prediction models; (2) describing the
ey processes and tactics of each approach; (3) paving a way for
2658
building owner to select a suitable model in practical engineering
(4) summarizing the widely used models at present and pointing
out future direction of building energy prediction models. The
paper is organized as follows. Section 2 elaborates on the physical
building energy models by introducing and comparing different
commonly used simulation tools. Section 3 studies the data-
driven energy prediction models, and the hybrid methods are
introduced in Section 4. The advantages and disadvantages of
each approach are presented in Section 5, and the conclusions
are drawn in Section 6.

2. Building physical energy models – ‘‘white box’’

Building physical energy models, also called physical models,
are based on heat and mass balance equations, which present the
dynamic thermal behavior of buildings. Three heat transfer mod-
els (i.e., conduction, convection and radiation) between building
envelop and its surroundings are considered in the heat balance
analysis of physical energy models. Various commercial or open-
source software products such as EnergyPlus, Dymola, TRNSYS,
DOE-2, and Matlab are available for building energy modeling to
construct and solve these equations conveniently (Harish and Ku-
mar, 2016), though the cooling and heating load can be calculated
manually. The description of heat and mass balance equations
and detailed steps to calculate the building heating and cooling
loads was introduced in this paper (Hensen and Lamberts, 2012).
Understanding the overall physical characteristics of buildings
is important for using these building simulation tools. The heat
flow through the building envelope is determined not only by
the temperature difference, thermal resistance, and surface area,
but also by the thermal inertia effect of the thermal mass, which
results in heat lag. In general, detailed building information is
required to develop such models. Building envelope parameters,
HVAC systems setting, internal heat gains, equipment and occu-
pancy schedules, thermal zones, location, and weather data are
essential to construct a physical building energy model (Crawley
et al., 2001). Zonal (Inard et al., 1996) and nodal (Zhai et al., 2011)
approaches are two common methods for developing a physical
model. These approaches are a fast and simple way to estimate
the heat behavior of buildings (Foucquier et al., 2013). The rest
of this section describes the modeling process, advantages and
limitations, and applications of the commonly used software.
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Fig. 2. Modeling flow chart of EnergyPlus.
.1. EnergyPlus

EnergyPlus has been under development since 1997 and was
irst released in 2001 (Crawley et al., 2001). It is an open-source
rogram (U.S. Department of Energy, 2021) and has been con-
idered as a widespread and powerful energy simulation tool in
uildings (Anon, 2006). Based on the Building Energy Software
ools Directory, EnergyPlus is introduced as a recommended tool
or energy simulation, building performance, heat and mass bal-
nce analysis, etc. (Anon, 2021e). EnergyPlus is a typical nodal
pproach software. The conduction transfer function and finite-
ifference algorithm are the two main methods used for the
odal approach, which can be regarded as a one-dimensional
ethod. The main advantage of this nodal approach that it can
olve the heat function of a large time scale of building thermal
erformance within a short computation time. The modeling flow
hart of EnergyPlus is shown in Fig. 2.
Owing to the merits of fast simulation speed and precise

nergy consumption estimation, EnergyPlus is a popular tool for
alculating and analyzing the energy consumption of various
uildings and energy systems, particularly at large time scales
uch as annual and monthly simulations (Trcka and Hensen,
010). Westphal and Lamberts (2005) presented a case study
howing that the annual electricity consumption prediction was
nly 1% lower than the actual value. Neto and Fiorelli (2008) con-
ucted a comparison between EnergyPlus and an artificial neural
etwork (ANN) for predicting building energy consumption. En-
rgyPlus presented a prediction error range of ±13%, while the
NN algorithm showed a prediction result of ±10%. They also
oncluded that the schedules of lighting, equipment, and occu-
ancy are the major sources of uncertainties in prediction. As the
iterature study has shown, the prediction errors were reportedly
ugely different for specific cases. To improve the stability of
his method, historical operational data from existing buildings
re readily used. Fumo et al. (2010) used EnergyPlus benchmark
odels to estimate building energy consumption. In their study, a
eries of predetermined coefficients determined by electrical and
uel utility bills were considered.

In the modeling process, heating, ventilation, and air-
onditioning (HVAC) systems are the most complicated and time-
onsuming components. To evaluate the energy consumption of
2659
HVAC systems, EnergyPlus has an energy management system
(EMS) module, which can be used to control energy-related
systems. Cetin et al. (2019) developed an EMS program to im-
prove the simulation performance at a short-time step (minute-
level) of residential and small commercial direct expansion (DX)
HVAC systems’ on/off control in EnergyPlus. More realistic re-
sults representing the on/off nature of the HVAC systems could
be obtained. It is worth noting that EnergyPlus was originally
developed for building envelope simulation, and therefore, estab-
lishing HVAC systems is troublesome and may cause problems in
EnergyPlus (Anon, 2021f).

2.2. TRNSYS

Transient system simulation (TRNSYS) was developed by the
Solar Energy Laboratory at the University of Wisconsin-Madison
(Anon, 2021d). TRNSYS is a transient system simulation tool with
a modular structure that is characterized as a flexible tool in
specific components or types for many applications such as solar
systems, buildings and HVAC systems, renewable energy systems,
fuel cells, and cogeneration. TRNSYS is an application with a
graphical user interface and has the extreme flexibility to develop
personal components or types (Wetter and Christoph, 2006).

TRNSYS is reportedly regarded as a widely used tool for build-
ing energy systems modeling, particularly for solar energy sys-
tems and heat pumps. Chargui et al. (2012) investigated the
heat performance of a geothermal heat pump system using the
TRNSYS model. A dual-source heat pump (Type 20) was used
to study the thermodynamic properties. Quesada et al. (2011)
presented a dynamic model of a grid-connected photovoltaic (PV)
system on TRNSYS. The results show that an accurate prediction
of long-term energy performance can be realized. A comparison
of TRNSYS, EnergyPlus, and IDA indoor climate and energy (IDA
ICE) was conducted by Mazzeo et al. (2020). The results showed
that EnergyPlus and IDA ICE are better than TRNSYS in predict-
ing thermal behavior in the presence of phase change materials
(PCM). However, in the absence of PCM, TRNSYS showed the
highest prediction accuracy in the warm period, whereas IDA ICE
achieved the best performance in the cooling period. TRNSYS can
not only forecast energy consumption but also facilitate energy
system design for energy optimization. Magnier and Haghighat
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Fig. 3. Architecture of Dymola software (Dynamic Modeling Laboratory User
anual Volume 1, Dassault Systèmes A.B., 2017).

2010) built a building base model on TRNSYS to develop a
atabase that was used to train the ANN for optimization.

.3. Dymola

The dynamic modeling laboratory (Dymola) was initially de-
igned in 1978 by Hiding Elmqvist in his doctoral dissertation
o build a structured model language for large continuous sys-
ems (Elmqvist, 1978). The building energy modeling Dymola
oftware is based on the Modelica language, which is an acausal,
bject-oriented, and equation-based language to conveniently
odel physical systems, including thermal, mechanical, electri-
al, and control systems (Anon, 2021c). The acausal modeling
pproach describes the components based on equations without
llocating input and output variables; therefore, the components
re easy to establish and modify. With this feature, Modelica
upports hierarchical model composition, truly reusable libraries,
onnectors, and acausal connections, and relieves the users from
anually converting equations to a block diagram or assignment
tatement. Dymola has a powerful graphic editor for developing
nd running models. Additionally, it can conveniently interact
ith external data. A typical architecture of Dymola is shown in
ig. 3.
Dymola is a relatively new tool in the domain of building en-

rgy simulations. Modelica buildings library developed by
awrence Berkeley National Laboratory is an open-source and
idely used library with comprehensive building components
nd control systems, which is sufficient for different buildings
nd energy systems (Anon, 2021b). The packages and components
n this library have been tested and validated using benchmark
odels (Nouidui et al., 2012), and the calculation time is compa-

able with that of TRNSYS (Wetter and Christoph, 2006). AixLib
rom RWTH Aachen University in Germany, BuildingSystems from
dk Berlin in Germany, and IDEAS from KU Leuven in Belgium
re three other core Modelica libraries for energy design and
peration of buildings under the IBPSA Project (Anon, 2021g). Kim
t al. (2015) developed a physical building information model
BIM) on the Dymola platform using object-based Modelica lan-
uage to simulate energy consumption, and the Modelica building
ibrary was used in their study. Chen et al. (2019) built an office
uilding model to estimate the HVAC load and total building
nergy consumption. In addition to describing the detailed HVAC
ystems, the internal thermal mass of the interior walls and
urniture was taken into account; thus, the dynamic thermal

alance of this system is much more realistic. Dymola, unlike

2660
EnergyPlus, can simulate a single building with an acceptable
computational cost but it might not be suitable for a large block of
buildings. Kim et al. (2019) established a single reduced model for
assembling ten buildings on Dymola, calculating district heating
and cooling demand.

2.4. Other tools

Other building energy performance simulation tools such as
IDA ICE, DOE-2, and eQUEST. IDA ICE was developed at the De-
partment of Building Sciences in Stockholm. DOE-2 was released
in the early 1980s, and eQUEST is an advanced version of DOE-2.
Researchers generally used eQUEST (Xing et al., 2015; Ke et al.,
2013; Wang et al., 2015) and DOE-2 (Tuhus-Dubrow and Krarti,
2010; Siddharth et al., 2011) to calibrate energy consumption
previously. Software co-simulation is a new trend because this
approach can combine the advantages of two or more simulation
tools, and it designates the best simulation performance and the
most computationally efficient approach for different sub-tasks.

2.5. Discussion on building physical energy models

The main advantage of the ‘‘white box’’ is that the relationship
between input and output is explainable. Correspondingly, the
disadvantage is that it is time-consuming and labor-intensive
to enter all the detailed building parameters, which might be
a problem for many buildings in the design phase and some
existing buildings. A brief description of the different simulation
tools is presented in Table 1. When selecting a tool to estimate the
building energy performance, it is important to make the trade-
off between the prediction accuracy and computing time. Nageler
et al. (2018) presented a comparison of four building energy sim-
ulation tools, including Dymola, EnergyPlus, IDA ICE, and TRNSYS,
on a test-box. After comparing the room temperature of test-box
with measured data, they found that the simulation results are
relatively accurate with an average bias of −0.92, −2.18, −0.37,
nd −1.13 K for these respective four tools.
Model calibration is an integral step to ensure the accuracy of

he energy model after it has been developed. For the purpose
f making the simulation results meet the measured data well
nough, the main process of building energy model is to adjust
he input parameters, such as the efficiency of the chiller, the
ccupancy schedules, and so on (Guo et al., 2021). Manual calibra-
ion heavily relies on the user’s practical experience to tune the
ey parameters in models. Automated calibration is based on an
bjective function or penalty function which is defined for match-
ng simulation results with measured data, and the parameters
etting is under search automatedly (Gaurav et al., 2016). Most of
hese calibrations are deterministic and neglect the inherent un-
ertainties of the building energy model. Therefore, the stochastic
alibration methods such as the Bayesian approach have gained
ttention recently (Hou et al., 2021). The data source and data
re-processing methods utilized in the calibration process were
omprehensively discussed in papers (Adrian et al., 2019; Murphy
t al., 2021; Chong et al., 2021).

. Data-driven models using machine learning algorithms –
‘black box’’

Compared with physical models, data-driven models do not
equire building thermal balance equations; therefore, less or
o building physical information is needed. Data-driven models
re based on historical data to deduce the hidden relationship
etween output (i.e., building energy consumption) and input
ariables (i.e., features such as weather, building information, oc-
upant behaviors, and equipment schedules) using mathematical
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Table 1
Brief description of different simulation tools.
Software tool Modeling approach Advantages Disadvantages Representative Reference

EnergyPlus Causal

Require small computation time;
Applicable to large scale buildings;
Good at envelope modeling;
Friendly for beginners;
Free

Require a significant amount of time,
experience, and effort to enter the
detailed parameters;
Some required parameters are not
available;
Not good at HVAC systems

U.S. Department of Energy (2021),
Trcka and Hensen (2010)
and Fumo et al. (2010)

TRNSYS Causal

Require small computation time;
Flexibility and customization;
Modular design;
Good at solar energy systems;
Friendly for beginners

Not good at building physical model;
Chargeable

Anon (2021d), Quesada et al. (2011)
and Jani et al. (2020)

Dymola Acausal

Flexibility and customization;
Modular design;
Good at HVAC systems modeling;
High reuse of components

Not friendly for beginners;
Relatively long computation time;
Chargeable

Anon (2021c), Hafner et al. (2014)
and Violidakis et al. (2020)

DOE-2 Causal Good at building physics modeling;
A traditional building simulation tool

Not good at energy systems;
Unfriendly user interface

Carriere et al. (1999) and
Winkelmann and Selkowitz (1985)
methods. Data-driven methods are well adaptable for buildings
without detailed physical parameters such as buildings in the de-
sign phase. A general process of the machine learning prediction
method is shown in Fig. 4. Widely used input variables include
time-series features (e.g., day type, occupancy rate and schedule,
operational schedule of equipment), meteorological conditions
(e.g., temperature, humidity, solar radiation), and building phys-
ical parameters (e.g., the number of floors, wall area, glazing
area, wall heat transfer coefficient). The output variables are
generally heating/cooling loads and electricity consumption (Do
and Cetin, 2018; Guo et al., 2018). Data-driven models have
gained increasing interest in building energy prediction owing to
their simplicity and flexibility (Wang and Srinivasan, 2017b). This
section presents the promising ‘‘black box’’ methods, including
linear regression (LR), support vector machine (SVM), extreme
gradient boosting (XGBoost), random forest (RF), recurrent neural
network (RNN), and artificial neural network (ANN).

3.1. Linear regression (LR)

LR is the simplest machine learning algorithm for a data-
ining beginner because no parameters need to be tuned. In
ddition, it requires fewer computing resources and therefore
as a fast prediction speed. LR has been widely used owing to
ts simplicity and good prediction performance in many fields.
inear and non-linear regression are two regression methods.
he principle of the regression is to establish the relationship
etween the output response variable y (i.e., label) and input
xplanatory variables x (i.e., feature variables). One of the most
ommon regression models of LR is expressed in Eq. (1). Other
ypes of regression models can be found in Fahrmeir et al. (2013).

= a1x1 + a2x2 +· · ·+ aixi +· · ·+ anxn + ε i ∈ [1, n] (1)

here a is the regression coefficient of the explanatory variables,
is a random deviation or error term, and n is the dimension of

he explanatory variables. For example, if the predicted output
is the electricity consumption of buildings, the feature vari-

bles could be ambient temperature, solar radiation, occupancy
chedules, and the total heat transfer coefficient of walls.
Because of the strong correlation between building loads and

utdoor air temperature, temperature as the most common ex-
lanatory variable is chosen in many different regression models.
agan and Behr (1989) established an LR model with time series
nd temperature as explanatory variables to predict the build-
ng electricity loads. According to the global energy forecasting
ompetition (Hong et al., 2014), linear and non-linear regression
2661
Fig. 4. Flow chart of machine learning model development and validation.

models are still a popular option for energy prediction. LR models
are simple and have a fast prediction speed. However, LR models
can barely meet high-precision prediction requirements, espe-
cially for HVAC loads, which are influenced by non-linear and
uncertain factors such as weather and schedules. The LR models
have acceptable prediction performance for weather-insensitive
loads such as lighting and equipment loads, but they lack the
ability to accurately predict weather-sensitive loads such as HVAC
loads (Chu et al., 2020).

3.2. Support vector machine (SVM)

SVM is a promising machine learning algorithm owing to its
strong non-linear capabilities, capable of realizing classification
and regression. SVM is commonly used for classification, while
support vector regression (SVR) can be used to forecast building
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Fig. 5. Schematic of the hyperplane.

loads. The main idea of SVM in regression is to introduce a ker-
nel function, which is capable of nonlinearly mapping the input
space into a hyper-dimensional feature space that formulates an
optimized hyperplane to realize LR in the feature space (Vapnik,
2013). The SVR function is expressed in Eq. (2).

f (x) = W Tϕ (x) + b (2)

where f (x) denotes the prediction outputs, W is the weight
factor, b is the adjustable factor, and ϕ (x) is the map function of
apping the input space into a high-dimensional feature space.
ig. 5 shows the solution process of the SVR. A margin of tolerance
is set, and the main goal is to maximize the margin to minimize
rediction error.
Studies on SVM for building energy prediction have been

idely reported in recent years (Chen and Tan, 2017; Son and
im, 2015) because of the ability to solve non-linear regression
roblems. Chen et al. (2017) proposed a novel SVR model in
hich the ambient temperature of two hours ahead was chosen
s the real input variable for short-term electrical load prediction.
his innovation improves the prediction accuracy by reducing the
eather-sensitive loads’ lagging effect from building’s internal
hermal inertia. The input variables are the ambient tempera-
ure and time series, which are adaptively used to build cases
here only the weather information is permitted. Vrablecova
t al. (2018) used SVR to forecast load using smart metering data
rom individual households. They concluded that SVR is not the
est algorithm for individual households’ electricity forecasting,
ut it is a promising method for forecasting aggregated loads
rom single buildings and a cluster of buildings. SVR has been
requently reported in short-term load forecasting because of its
rediction accuracy and speed in this field (Yang et al., 2019;
e et al., 2017). Chen and Tan (2017) used SVR to forecast 24-h
head hourly electric demand for a hotel and a mall. According to
heir study, the SVR model can complete the prediction procedure
ithin 20 s, and the prediction errors are approximately 4.0% and
.0% for the hotel and mall, respectively, which is applicable for
eal-time control of a building energy management system such
s DR.

.3. Random forest (RF)

RF is a supervised learning algorithm that uses a bagging
bootstrap aggregating) algorithm for regression. RF is based on a
ecision tree, and multiple trees are established to obtain average
rediction results. The prediction process of the RF is shown
n Fig. 6. Each decision tree is formed randomly with different
2662
features and training datasets, and they can be trained in parallel.
In this way, the prediction accuracy is higher than that of a single
decision tree. In addition, it overcomes the overfitting problem
by establishing multiple decision trees, where each decision tree
works on a random sample of the original dataset. Thus, the
prediction results are less likely to be influenced by outliers,
which are quite common in datasets. In the RF model, the number
of trees and the depth of a tree are two key parameters that need
to be tuned, and therefore RF model requires fewer parameters
to be set compared with other algorithms (Dudek, 2015; Lahouar
and Slama, 2015; Moon et al., 2018).

Ahmad and Chen (2019) made a comparison between a non-
linear autoregressive model (NARM), linear model using stepwise
regression (LMSR), and RF for medium-term and long-term en-
ergy prediction. Ambient temperature and relative humidity ratio
are the two main input variables in the models. For different
seasons, they found that the RF model had a lower average error
(MAPE: 2.64%) than the other two methods, i.e., LMSR (MAPE:
3.10%) and NARM (MAPE: 4.21%). In all these three models, the
average MAPE was worse in summer and winter (summer: 3.97%;
winter: 3.42%; spring: 3.00%; autumn: 2.87%). One reason is that
AC loads are more complicated and difficult to forecast with a
standalone algorithm in the summer and winter seasons. There-
fore, decomposing the building loads into different types and
predicting them individually is a promising way to improve the
prediction performance (Wang et al., 2012; Ji et al., 2016).

In addition to the advantages of less overfitting and higher ac-
curacy, RF can give the importance of features that are used in the
training and testing process of the model. Feature importance is
important for choosing the main features while skipping the weak
ones to accelerate the computational process and ensure the
prediction accuracy at the same time. Lahouar and Slama (2015)
predicted the day-ahead building load based on the RF model.
In their study, an expert feature selection strategy was adopted.
The input feature variables included day type, temperature, and
load of the previous day. They concluded that the order of the
importance is previous day load, day type, and temperature.

3.4. Extreme gradient boosting (XGBoost) and lightGBM

XGBoost is an ensemble learning algorithm that can solve
many data-mining problems in a fast and accurate manner. Re-
leased on March 27, 2014, by Tianqi Chen, XGBoost is based on a
gradient boosting algorithm and dominates the field of machine
learning. It is a powerful algorithm, as most Kaggle competitions
reported that it was the final winner (Butch, 2020; Anon, 2021a).
XGBoost was designed using a gradient boosting algorithm, con-
verting weak learners to a strong learner. It can produce better
prediction outcomes by controlling the model complexity and
reducing overfitting owing to its built-in regularization. XGBoost
is a relatively novel and advanced algorithm that has not been
widely studied in building energy prediction (Wang et al., 2020a).
Unlike the RF algorithm, in which the multiple predictors are
in parallel, XGBoost adds the predictors sequentially. Nowadays,
XGBoost can be easily implemented with the package in Python,
R, Julia, and Scala (Anon, 2021h).

Wang et al. (2020a) studied the prediction characteristics of
XGBoost on building thermal load prediction. In their models, five
input variables including day of week, hour of day, holiday, tem-
perature, and relative humidity were taken into consideration.
They found that XGBoost (CV-RMSE: 21.1%) in shallow machine
learning outperformed other machine learning algorithms such
as SVM (CV-RMSE: 25.0%), RF (CV-RMSE: 23.7%), and LSTM (CV-
RMSE: 31.9%) for long-term prediction. Because the correlation
between input and output is less relevant when the prediction
duration is long, algorithms such as LSTM (long-term: CV-RMSE
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Fig. 6. Principle of RF algorithm.
1.9%; short-term: CV-RMSE 20.2%) are not good for this long-
erm task. XGBoost is good at long-term prediction, as other
tudies have found. Lu et al. (2020) proposed a novel model that
ombines XGBoost to predict the long-term energy consump-
ion of an intake tower. The MAPE of the prediction results of
he different methods are as follows: CEEMDAN-XGBoost: 4.85%,
GBoost: 8.06%, CEEMDAN-RF: 6.26%, and PSO-SVM: 7.92%.
In the building energy demand, the load demand of HVAC

ystems is the main difficulty to estimate because of its nonlinear
haracter. Lu and Meng (2020) found that XGBoost is the best
odel for forecasting AC energy use in residential buildings in
hongqing. For the cooling season of AC in buildings, they found
hat 11 input variables have a great influence on cooling energy
se. These variables mainly included outdoor air temperature,
unning time of the AC, and temperature differences between
ndoor air and set-point, whereas no building physical and ther-
ophysical variables such as window–wall ratio and total heat

ransfer coefficient of the envelope were considered. The predic-
ion performance is not well compared with the results in Wang
t al. (2020a) XGBoost (CV-RMSE: 62%), RF (CV-RMSE: 64%), SVR
CV-RMSE: 64%), and ANN (CV-RMSE: 73%). Wang et al. (2019b)
ested several popular models (i.e., XGBoost, RF, ANN, and SVR) to
redict the heating energy consumption of a residential building
n Tianjin, China. Six input features (i.e., outdoor dry bulb temper-
ture, dew point temperature, outdoor relative humidity, wind
peed, solar radiation, and hour of day) were used in their models.
he CV-RMSE of the prediction results of the different models is
s follows: average RF: 5.0%, XGBoost: 5.8%, SVR: 6.2%, and ANN:
.0%.
In addition, lightGBM is a tree-based gradient boosting frame-

ork similar to XGBoost. It was first released on October 17,
016 as a part of Microsoft’s Distributed Machine Learning Toolkit
roject (Anon, 2021i). It was designed to be fast and distributed
ith the advantages of faster training speed and higher efficiency,

ower memory usage, supporting parallel and GPU learning, and
apable of handling large-scale data. LightGBM uses histogram-
ased algorithms to bucket continuous features into discrete bins
o that it can reduce communication cost and memory usage (Jin
nd Agrawal, 2003; Ke et al., 2017). Thus, lightGBM is a promising
lgorithm for energy prediction in massive data sources.

.5. Artificial neural network (ANN)

ANN is a nonlinear statistical algorithm inspired by biological
eural networks. It can deduce the complicated hidden relation-
hip between inputs and outputs. The principle of a typical one
2663
hidden layer ANN is shown in Fig. 8. A typical ANN has three
interconnected layers: input, middle (i.e., hidden), and output
layers. Theoretically, the hidden layer consists of many sub-layers
depending on the complexity and nature of the task (Mandal
et al., 2006; Kiartzis et al., 1997).

In addition to the factor of prediction accuracy, computing
time is another critical factor in evaluating the performance of a
model. Generally, increasing the dimension of input features can
improve prediction accuracy, but this strategy may also increase
the computation cost, particularly for massive data processing.
Ahmad et al. (2017) compared an ANN and RF for HVAC electricity
consumption prediction of a hotel. Outdoor air-dry bulb temper-
ature, outdoor air relative humidity, day of week, hour of day,
occupancy schedule, and total rooms booked were considered as
input variables. They found that the ANN model’s prediction re-
sults were slightly better (MAE: 9.18% vs. 9.31%) when the model
used all variables (ten features) instead of only using the impor-
tant variables (four features). In their study, the computation time
was not provided; nevertheless, using the main input features in
the model is a good way to optimize the prediction model in
practice. Mena et al. (2014) predicted the short-term electricity
demand of a bioclimatic building in Spain by using an ANN-based
model. To avoid the use of unimportant variables in the model,
input feature variable selection was implemented ahead of the
data training and testing. The order of features’ importance of
different input variables is as follows: solar radiation, outdoor
temperature, wind speed, outdoor humidity, and wind direction,
and a mean error of 11.48% has been realized.

3.6. Recurrent neural network (RNN)

Elman RNN, LSTM, and gated recurrent unit (GRU) are three
common RNN algorithms. LSTM was designed for handling se-
quential data and was first introduced by Hochreiter and Schnid-
huber in 1997 (Hochreiter and Schmidhuber, 1997). Compared
with the traditional neural network, LSTM can pass the informa-
tion from the last steps to the next time step (i.e., backpropa-
gation). Fig. 7 shows this memory passing process. LSTM can be
considered as an integration of many traditional neural networks.
Based on this feature, LSTM is an inborn network that processes
sequential data such as building load. It can solve complex and
long-time-lag tasks that traditional RNN algorithms can barely
solve. In the study (Wang et al., 2020a), LSTM performed better
for short-term load prediction compared with LR, SVM, RF, and

XGBoost.
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Fig. 7. Process of backpropagation approach of RNN.
Fig. 8. Principle of typical ANN with one hidden layer.

.7. Other models

In 1965, the concept of ensemble learning was introduced by
ilsson (1965). Compared with single models that use only one
lgorithm, the ensemble model consists of multiple algorithms.
he ensemble model combines a single algorithm and takes ad-
antage of each algorithm to improve prediction accuracy. The
ramework of the ensemble model is shown in Fig. 9. The goal of
he ensemble model is to minimize the prediction errors; hence,
he base algorithms with high prediction accuracy have higher
eights.
Fan et al. (2014) developed an ensemble model integrating

ight base algorithms for next-day building energy prediction.
he eight base algorithms were RF, SVR, multiple LR, multi-
ayer perceptron, boosting tree, multivariate adaptive regression
plines, k-nearest neighbors, and autoregressive integrated mov-
ng average, and the weights of these algorithms were 0.404,
.315, 0.087, 0.076, 0.066, 0.023, 0.021, and 0.008, respectively.
uc-Hoc et al. (2020) proposed a new ensemble model called an
volutionary neural machine inference model that combined SVR
nd radial basis function ANN. Measured data from residential
uildings was used to evaluate this ensemble model. In their
tudy, the computing time of different models was logged. The
omputing times of ANN, SVM, DNN, and ENMIM were 5, 7, 300,
nd 600 s, respectively. Zhang et al. (2020) proposed a novel
2664
Fig. 9. Framework of an ensemble model.

ensemble deep learning method for short-term building energy
forecasting. They decomposed the data into a stable and stochas-
tic part. The stochastic part was estimated by using the ensemble
model, which combines a novel deep belief network and extreme
learning machine. Wang et al. (2020b) proposed a novel stack-
ing model for building energy prediction. In their study, several
widely used algorithms, including RF, XGBoost, SVR, and kNN
models, were selected as the base models in the first layer. Then,
the stacking method was used to ensemble each base model by
cross-validation to boost the prediction performance.

Transfer learning aims to learn knowledge from one task to
other similar tasks, as shown in Fig. 10. It has been successfully
applied in domains such as machinery fault diagnosis (Wu et al.,
2020; Chuan et al., 2020) and image classification (Swati et al.,
2019). It is worth noting that data sources should have simi-
lar features to apply this method to building energy prediction.
Because the building data usually meet this criterion, it is an
attractive idea to use the data in well-measured buildings to
predict the energy consumption of other buildings with limited
data (Qian et al., 2020).

The literature reviews show that transfer learning can also
be well integrated with other data-driven algorithms. Qian et al.
(2020) studied the transfer learning model with SVR in short- and
medium-term HVAC energy consumption. Gao et al. (2020) used
the transfer learning model to predict the energy consumption
of a building with poor data information. Ribeiro et al. (2018)
proposed a transfer learning method for cross-building energy
forecasting; the results showed that the prediction accuracy was
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improved by 11.2% by using data from other buildings. A novel
transfer learning-based methodology has been proposed for 24-h
ahead building energy forecasting by Fan et al. (2020). Compared
with standalone models, this new model could reduce prediction
errors by 15% to 78%.

3.8. Discussion of data-driven models

Compared with ‘‘white box’’ models, although data-driven
models do not require massive engineering efforts during the
development process, the generalization of a well-tuned data-
driven model is usually poor (Zhang and Wen, 2019a). Thus,
scholars have focused on feature selection in almost all data-
driven models to develop a more general model that can be used
in different buildings (Luo et al., 2020). The input feature variables
are commonly categorized into three types: external climate data,
internal factors, and operation schedules of energy facilities (Li
et al., 2009; Leung et al., 2012; Luo et al., 2019), and five mature
feature selection methods were proposed in the paper (Sun et al.,
2020). Considering that buildings and their energy systems are
different in practice, the feature selection results are quite dif-
ferent from one to another. Based on a comprehensive literature
review, the usage frequency of features in 25 core references is
summarized in Fig. 11, and the detailed description is included
in Appendix. As shown in Fig. 11, outdoor dry bulb temperature,
outdoor relative humidity, solar radiation, day of week, and hour
of day are the five most frequently used input features in data-
driven models. In addition to external climate data, the physical
information about buildings such as the number of floors, wall
area, and glazing area is used to improve prediction accuracy.

According to the abovementioned data-driven models, STLF
and LTLF are two common prediction requests in building en-
ergy management. Some of them are good at short-term predic-
tion, while some perform better in the long-term. Fig. 12 shows
the prediction preferences of the abovementioned algorithms for
STLF and LTLF in 25 core references. As shown in Fig. 12, XGBoost
is most probably used for LTLF, while RNN is commonly employed
for STLF; ANN and RF could be used for both time spans.

In addition to the hard works on feature engineering and
model selection, load decomposition is a promising approach to
improve the prediction accuracy. There are two methods for load
decomposition. First, signal decomposition and transformation
are the most widely used methods, such as Fourier analysis (He
et al., 2020) and wavelet analysis (Alipour et al., 2020). Chu
et al. (2020) decomposed the total building loads into a basic and
seasonal weather-sensitive part and obtained more accurate re-
sults. Second, sub-meter technology has been rapidly developing

in recent years, which makes it possible to predict the load of ‘
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HVAC systems, lighting, plugs, and other equipment separately.
Fu et al. (2015) used sub-meter data to predict the electricity load
of public buildings with high prediction performance. Compared
with load decomposition, load clustering technology can classify
homogeneous loads that have similar patterns into one group,
which enhances the prediction performance by developing a sin-
gle model for each cluster. An early load classification algorithm
was proposed in this paper (Chen et al., 2021).

Model calibration is much easier for the data-driven models
compared with the white box models mentioned above because
the dataset has already obtained before model development and
has been split into training and validation datasets. The com-
monly used split rate is 80% for training and 20% for valida-
tion (Sun et al., 2020; Liu et al., 2020). A proper validation metric
is the key to evaluating a model. The widely used evaluation
metrics are MAPE, MAE, and CV-RMSE (Chen et al., 2021; Zhe
et al., 2020).

4. Hybrid models – ‘‘grey box’’

The modeling and calibration process of ‘‘white box’’ software
is a huge challenge for building energy stakeholders. A large num-
ber of basic input parameters are required; thus, the modeling
development on a physical software platform is time-consuming,
and the simulation economic cost is high. The ‘‘black box’’ models
capture linear and nonlinear relevance between the input and
output variables in an easy way. However, for such models, it
usually takes enormous historical data and a long time to train
the model and achieve accurate predictions under different con-
ditions. To solve this dilemma, ‘‘grey box’’ has been proposed.
It uses a simplified physical model and easily accessible data to
simulate building energy demand, thus combining the advantages
of both the white and black boxes.

4.1. resistance–capacitance (RC) thermal network

RC model is a typical grey box model which was introduced
in early 1985 by Hassid (1985). He proposed two resistances and
one capacitance (i.e., the 2R1C model) to represent the building
envelope’s thermal performance of a multi-story building. The
sketch diagram of a simplified building energy RC model is shown
in Fig. 13.

Ji (2016) established a new RC-S (RC-submeter) model with
building submeter measured data to predict the hourly cooling
load in buildings. In this model, the heat transfer through the
building envelope is calculated using the traditional 3R2C model,
aiming at the heat stored inside the building thermal mass. This
model was verified by simulation and actual operational data, and
the prediction MAE was within 9.0%. Mohammad et al. (2020) de-
veloped a second-order RC grey box representing a case building
structure for building heat demand simulation with uncertainty
analysis, which is crucial to ensure the validity of simulation
results in a ‘‘grey box’’ model. Murphy et al. (2021) developed a
2R2C grey box model to predict the dynamic internal air temper-
ature. In this grey model, internal air mass and internal thermal
masses were modeled as independent capacitors; external sur-
faces were modeled as one resistor while walls and roofs were
modeled as the other resistor. More variants of xRyC models can
e found in the paper (Li et al., 2021).

.2. Other models

A hybrid model integrated with a simulation tool and data-
riven algorithm can be another option, as shown in Fig. 14. It
ay generate better prediction results than the ‘‘white box’’ and
‘black box’’. For instance, Dong et al. (2016) established a hybrid
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Fig. 11. Frequency of input features of data-driven models in 25 core references.
Fig. 12. Frequency of use of different algorithms for STLF and LTLF in 25 core
references.

model that combines data-driven and physics-based models to
estimate the total energy consumption for a residential building.
Compared with the other five data-driven algorithms, ANN, SVR,
LS-SVM, GPR, and GMM, the 24-ahead prediction accuracy of this
hybrid model is the best. Xu et al. (2012) developed a model
coupling EnergyPlus with ANN to predict the energy consump-
tion of a cluster of ten residential single-family houses. External
empirical sources including experimental data and demographics
were considered in the model.

4.3. Discussion of hybrid models

Through the literature review, it appears that the hybrid mod-
els simplify the description of the building heat transfer process
and leverage the advantages and disadvantages of both physical
and statistical methods. Thus, some of the parameters in the
model are interpretable. RC model is a typical and the most
popular hybrid model, and the RC model can separately represent
the building physical parts and dynamic processes such as heat
transfer through external envelope, zone air, zone internal mass,
internal heat gains, and infiltration (Li et al., 2021). There are
2666
Fig. 13. An example of building RC thermal model.

some applications of the hybrid model including heat dynamic
analysis, building control and optimization, urban size energy
modeling, and building grid integration. With the development of
building energy simulation tools and cloud computing, the hybrid
model could become more prevalent in the future, and promote
the development and cooperation between physics-based and
data-driven approaches.

5. Advantages and limitations of each prediction approach

A detailed description of each prediction approach was pre-
sented in the above sections. Physics-based, data-driven, and
hybrid modes have different properties that are determined to
the model preference of users. A standard to select the best
approach for different scenarios was proposed in the paper (Dawn
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Fig. 14. Scheme of a hybrid model combining building physics with the data-driven algorithm.
Table 2
Advantages and disadvantages of different prediction approaches.
Prediction approaches Advantages Disadvantages

‘‘White box’’ models

• The relationship between input and output is
explainable
• The parameters are easily modified
• No historical data is required

• It requires a significant amount of efforts to
input building information and parameters
• Computation cost is huge
• It requires previous knowledge of thermal
dynamics and software

‘‘Black box’’ models

• No specific expertise is required
• Model development period and computational
time are short
• The developed model is easy to be generalized

• It requires large amounts of historical data
• It is easy overfitting
• It is usually no-explainable

‘‘Grey box’’ models
• Less data is required
• Only bounds on physical parameters are
required

• It couples two distinct scientific domains
• It is not easy to develop
et al., 2015). Table 2 summarizes the advantages and disadvan-
tages of these three approaches, and it benefits engineers to select
an appropriate model for their own needs.

6. Conclusion

In this paper, we presented an in-depth review of the main ap-
roaches applied to building energy prediction. These approaches
ere clustered into three groups including the most commonly
sed methods. First, the building physics-based simulation tools
i.e., white box) have been introduced. These tools can be divided
nto zonal and nodal approaches. Second, data-driven models
i.e., black box) have been reviewed. There are six main algo-
ithms: linear regression (LR), support vector machine (SVM),
2667
random forest (RF), extreme gradient boosting (XGBoost), recur-
rent neural network (RNN), and artificial neural network (ANN).
The last category is the hybrid model (i.e. grey box), which
relies on both physical model and data-driven model. Through
a well-rounded study of these three approaches, the following
conclusions were drawn:

(1) It is better to use physical models for their reliability, inter-
pretability and accuracy although the modeling process is time-
consuming and repetitive. Data-driven models are extremely use-
ful when owners have sufficient historic data from existing build-
ings, whereas there is no or insufficient information of design
building. Hybrid models make a great trade-off between physical
and data-driven models, and they could be a better option when
the required information is insufficient for the other two models.
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Table A.1

Reference Input features Algorithms Prediction span

Wang et al. (2020a) Day of week; Hour of day; Holiday; Outdoor dry bulb
temperature; Outdoor relative humidity

XGBoost; RF; SVR; LSTM LTLF

Lu and Meng (2020) Outdoor dry bulb temperature; Equipment schedule XGBoost; RF; SVR; ANN LTLF

Wang et al. (2019b) Outdoor dry bulb temperature; Outdoor relative humidity;
Wind speed; Solar radiation; Hour of day

RF; SVR; ANN LTLF

Ahmad and Chen (2019) Outdoor dry bulb temperature; Outdoor relative humidity XGBoost; LR; NARM LTLF

Lahouar and Slama (2015) Hour of day; Outdoor dry bulb temperature RF STLF

Ahmad et al. (2017) Outdoor dry bulb temperature; Outdoor relative humidity;
Day of week; Hour of day; Occupancy schedule

RF; ANN STLF

Leung et al. (2012) Outdoor dry bulb temperature; Outdoor relative humidity;
Solar radiation; Wind speed; Equipment Schedule; Day of
week; Holiday; Occupancy schedule

ANN STLF

Mena et al. (2014) and Li et al. (2009) Outdoor dry bulb temperature; Solar radiation SVR; ANN STLF

Chen et al. (2017) Outdoor dry bulb temperature; Hour of day; Day of week SVR STLF

Kusiak et al. (2010) Outdoor dry bulb temperature; Outdoor relative humidity ANN Both

Cai et al. (2019) Outdoor dry bulb temperature; Outdoor relative humidity; Air
pressure; Wind speed

RNN STLF

Chammas et al. (2019) Outdoor dry bulb temperature; Outdoor relative humidity;
Equipment energy density; day of the week

MLP STLF

Wei et al. (2019) Indoor temperature; Indoor humidity; Indoor CO2; Occupancy
schedule; Solar radiation; Outdoor dry bulb temperature;
Outdoor relative humidity; Wind speed

ANN STLF

Ding et al. (2018) Outdoor dry bulb temperature; solar radiation; wind speed;
Indoor temperature; Indoor humidity; Occupancy schedule;
Equipment schedule; Thermal mass

MLP; SVR STLF

Mun et al. (2019) Indoor temperature; Indoor humidity LR; RF; SVR STLF

Wang et al. (2019a) Occupancy schedule; Day of week LSTM STLF

Sala-Cardoso et al. (2018) Occupancy schedule RNN STLF

Fan et al. (2014) Day of week; Hour of day; Holiday; Outdoor dry bulb
temperature; Outdoor relative humidity; Solar radiation; Wind
speed

Ensemble models STLF

Seyedzadeh et al. (2019) Relative compactness; Surface area; Wall area; Roof area;
Number of floors; Orientation; Glazing area; Outdoor dry bulb
temperature; Outdoor relative humidity; Solar radiation

ANN; SVM; RF; XGBoost LTLF

Wei et al. (2016) Aspect ratio; Window–wall ratio; Number of floors;
Orientation; Building scale

RF LTLF

Tsanas and Xifara (2012) Relative compactness; Surface area; Wall area; Roof area;
Number of floors; Orientation; Glazing area

LR; RF Both

Kumar et al. (2018b) Aspect ratio; Relative compactness; Glazing area; Roof area;
Surface area; Wall area; Orientation; Number of floors;
Glazing area

ANN; SVR; RF Both

Kumar et al. (2018a) Outdoor dry bulb temperature; Outdoor relative humidity;
Solar radiation; Roof area; Wall area; Relative compactness;
Surface area; Number of floors; Orientation; Glazing area

ELM STLF

Zhang and Wen (2019b) Day of week; Hour of day; Holiday; Outdoor dry bulb
temperature; Outdoor relative humidity;

MARS STLF
(2) STLF and LTLF are two different types of needs in building
nergy management projects. STLF is crucially important for con-
rol goals such as energy system optimization and DR, whereas
TLF is of great interest for long-term energy planning, such as
ystem planning and energy policy formulation.
(3) Simulation tools such as TRNSYS and Dymola are good at

stablishing energy systems, while EnergyPlus is good at building
nvelop simulation. In addition, some data-driven models such as
GBoost are preferred for LTLF, while RNN is good at STLF, and
NN and RF can be used for both time spans.
(4) Feature selection is the most popular strategy for a data-

riven model. Outdoor dry bulb temperature, outdoor relative
umidity, solar radiation, day of week, and hour of day are the
ive most important and frequently used input features in data-
riven models. In addition, the physical information of buildings,
2668
such as the number of floors, wall area, and glazing area, can be
used to improve the prediction accuracy.
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